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Abstract

We use the first-order shear deformation theory and a meshless method based on radial basis functions in a

pseudospectral framework for predicting the free vibration behavior of thick orthotropic, monoclinic and hexagonal

plates. The shape parameter is obtained by an optimization procedure. The three translational and two rotational degrees

of freedom of a point of the laminate are independently approximated. Through numerical experiments, the capability and

efficiency of the radial basis functions—pseudospectral method for eigenvalue problems are demonstrated, and the

numerical accuracy and convergence are examined.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

We analyze free vibrations of rectangular plates comprised of three anisotropic materials with a meshless
(collocation) technique based on radial basis functions in a pseudospectral framework that uses an optimal
shape parameter [1,2]. The first 10 frequencies of thick plates comprised of orthotropic, monoclinic and
hexagonal materials are compared with those from Batra et al. [3] who computed frequencies by the finite
element method using the computer code IDEAS and a uniform 40� 40� 4 mesh of 20-node brick elements
with four elements in the thickness direction and the consistent mass matrix.

We use Wendland compact support radial basis functions in the form

f�ðrÞ ¼ ð1� �rÞ
8
þð32ð�rÞ

3
þ 25ð�rÞ2 þ 8�rþ 1Þ, (1)

where � is an (optimal) shape parameter (e.g., see Refs. [1,2]) and r is the Euclidean distance between two
distinct points. Exact natural frequencies of thick orthotropic simply supported rectangular plates were
obtained by Srinivas and Rao [4]. Batra and Aimmanee [5,6] have pointed out that some inplane distortional
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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modes of vibration are missing in their solutions and in solutions of other investigators based on the same
method (e.g., see Refs. [7–10]). Because of the current interest in nanomaterials which are anisotropic and
exhibit less symmetries than an orthotropic material, we provide here the first 10 natural frequencies of
orthotropic, monoclinic and hexagonal thick square plates.

Unlike the previous work of Ferreira and Batra [11], where multiquadrics and user-defined shape parameter
were used, the present optimized radial basis functions with compact support—pseudospectral method
produces accurate natural frequencies for orthotropic, monoclinic and hexagonal plates. A multiquadratic
basis function is given by

gcðrÞ ¼ ðr
2 þ c2Þ1=2 (2)

where c is a constant. Whereas f� given by Eq. (1) is a polynomial of degree in r on its support, gc defined by
Eq. (2) is not a polynomial in r and is essentially proportional to r. A numerical technique employing higher-
order polynomials as basis functions is expected to improve the accuracy of the numerical solution. Another
reason for using basis functions given by Eq. (1) is that the numerical algorithm is stable, gives good
eigenmodes and converges rapidly with an increase in the number of collocation points. On the other hand, an
algorithm using basis functions given by Eq. (2) may be unstable and yield poor eigenmodes. Eigen-solutions
computed with Eq. (2) were found to strongly depend upon the value of the shape parameter c. Whereas the
shape parameter in Refs. [1,2] was estimated, here techniques presented in Refs. [12,13] are employed to
adaptively assign the optimum value to the shape parameter �. However, in Refs. [12,13] we used
multiquadrics and inverse multiquadrics as basis functions. In Ref. [14], we used the cross validation algorithm
to find the optimized shape parameter coupled with radial basis functions of compact support given by Eq. (1)
to study static deformations and vibrations of a plate made of an isotropic material. Here we extend the
concept to study vibrations of anisotropic plates. Because of a large number of non-zero material elasticities
for anisotropic materials, the coupling among terms is different from that in an isotropic material. It is thus
interesting to investigate if the collocation method employing compactly supported radial basis functions with
an adaptively optimized shape parameter will accurately predict the ten lowest frequencies of a thick
anisotropic plate.

We note that the use of compactly supported radial basis functions instead of globally supported functions
(such as multiquadrics) is motivated and justified by the fact that for the eigenproblem at hand the global
functions suffer from too much ill-conditioning and, therefore, are unstable and produce ill-shaped
eigenvectors. The compactly supported functions, on the other hand, are stable, produce good eigenmodes
and are convergent as we use more nodes. Together with the shape parameter optimization, the use of
compactly supported functions provides, in our opinion, the best choice so far for analysis of natural
vibrations of plates based on radial basis functions.

Based on a large variety of problems studied, we believe that globally or compactly supported functions
work well for static problems, but for eigenproblems one should definitively use compactly supported radial
basis functions.
2. Results

2.1. Orthotropic materials

We assume that the plate material is Aragonite for which [1]

½D� ¼

160 37:3 1:72 0 0 0

86:87 1:72 0 0 0

84:81 0 0 0

sym: 25:58 0 0

42:68 0

0 42:06

2
666666664

3
777777775
GPa. (3)
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Table 1

For different aspect ratios, first 10 non-dimensional natural frequencies of a simply supported orthotropic square plate

N Source h̄ ¼ 0:1 h̄ ¼ 0:2 h̄ ¼ 0:3 h̄ ¼ 0:4 h̄ ¼ 0:5

1 Batra et al. [3] 0.0477* 0.1721* 0.3407* 0.5304* 0.7295*

(0.0474) (0.1694) (0.3320) (0.5134) (0.7034)

Present 9� 9 0.0478 0.1725 0.3406 0.5294 0.7267

11� 11 0.0478 0.1724 0.3406 0.5293 0.7266

15� 15 0.0478 0.1724 0.3406 0.5293 0.7266

Ref. [11] 0.0477 0.1725 0.3410 0.5300 0.7273

2 Batra et al. [3] 0.1021* 0.3221 0.4832 0.6443 0.8054

(0.1033) [0.3222] [0.4833] [0.6444] [0.8055]

Present 9� 9 0.1028 0.3221 0.4831 0.6442 0.8052

11� 11 0.1029 0.3221 0.4832 0.6443 0.8053

15� 15 0.1029 0.3221 0.4832 0.6443 0.8054

Ref. [11] 0.1031

3 Batra et al. [3] 0.1227* 0.3221 0.4832 0.6443 0.8054

(0.1188) [0.3222] [0.4833] [0.6444] [0.8055]

Present 9� 9 0.1225 0.3221 0.4832 0.6442 0.8053

11� 11 0.1228 0.3221 0.4832 0.6443 0.8054

15� 15 0.1228 0.3221 0.4832 0.6443 0.8054

Ref. [11] 0.1232

4 Batra et al. [3] 0.1611 0.3372* 0.6198* 0.8666 1.0823

[0.1611] (0.3476) (0.8667) (1.0824)

Present 9� 9 0.1610 0.3380 0.6185 0.8786 1.0983

11� 11 0.1611 0. 3381 0.6186 0.8782 1.0977

15� 15 0.1611 0.3381 0.6186 0.8781 1.0976

Ref. [11] 0.3387 0.6195

5 Batra et al. [3] 0.1611 0.4012* 0.6504 0.9158* 1.2144*

[0.1611] (0.3707) (0.6504)

Present 9� 9 0.1611 0.4005 0.6590 0.9102 1.2027

11� 11 0.1611 0.4007 0.6586 0.9103 1.2028

15� 15 0.1611 0.4007 0.6586 0.9103 1.2027

Ref. [11] 0.4018 0.9113 1.2039

6 Batra et al. [3] 0.1721* 0.4338 0.7318* 1.0756* 1.4214*

[0.1694] (0.4338)

Present 9� 9 0.1729 0.4393 0.7293 1.0694 1.4095

11� 11 0.1725 0.4391 0.7295 1.0696 1.4098

15� 15 0.1724 0.4390 0.7294 1.0695 1.4097

Ref. [11] 0.1728 0.7310 1.0714 1.4112

7 Batra et al. [3] 0.1828* 0.5304* 0.9324* 1.2886 1.4924

(0.1888) (0.5134)

Present 9� 9 0.1833 0.5300 0.9279 1.2878 1.4991

11� 11 0.1843 0.5294 0.9272 1.2884 1.4991

15� 15 0.1842 0.5293 0.9270 1.2886 1.4991

Ref. [11] 0.1728 0.5305 0.9288

8 Batra et al. [3] 0.2169 0.5508* 0.9566* 1.2886 1.6107

(0.2170) [1.6110]

Present 9� 9 0.2197 0.5492 0.9484 1.2881 1.6097

11� 11 0.2195 0.5510 0.9508 1.2885 1.6105

15� 15 0.2195 0.5508 0.9505 1.2886 1.6107

Ref. [11] 0.5517 0.9514

9 Batra et al. [3] 0.2327* 0.6443 0.9664 1.3409* 1.6107

[0.6444] [0.9666] [1.6110]

Present 9� 9 0.2309 0.6439 0.9658 1.3292 1.6102

11� 11 0.2327 0.6442 0.9663 1.3285 1.6106

A.J.M. Ferreira et al. / Journal of Sound and Vibration 319 (2009) 984–992986
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Table 1 (continued )

N Source h̄ ¼ 0:1 h̄ ¼ 0:2 h̄ ¼ 0:3 h̄ ¼ 0:4 h̄ ¼ 0:5

15� 15 0.2326 0.6443 0.9664 1.3283 1.6107

Ref. [11] 0.2335 1.3303

10 Batra et al. [3] 0.2459* 0.6443 0.9664 1.3668* 1.7119

(0.2475) [0.6444] [0.9666]

Present 9� 9 0.2477 0.6441 0.9661 1.3481 1.7267

11� 11 0.2471 0.6443 0.9664 1.3511 1.7260

15� 15 0.2467 0.6443 0.9664 1.3507 1.7258

Ref. [11] 0.2473 1.3514

Exact frequencies from Ref. [4] are listed in parentheses, and those from Ref. [5] in square brackets. Frequencies of flexural modes are

marked with *. Frequencies from Ref. [11] are for the 15� 15 uniformly distributed collocation points.

Table 2

For different aspect ratios, first 10 non-dimensional natural frequencies of a clamped orthotopic square plate

N Source h̄ ¼ 0:1 h̄ ¼ 0:2 h̄ ¼ 0:3 h̄ ¼ 0:4 h̄ ¼ 0:5

1 Batra et al. [3] 0.0804* 0.2563* 0.4593* 0.6674* 0.8755*

15� 15 0.0806 0.2553 0.4548 0.6569 0.8570

Ref. [11] 0.0804 0.2563 0.4593 0.6674 0.8755

2 Batra et al. [3] 0.1379* 0.4053* 0.6943* 0.9850* 1.2749*

15� 15 0.1384 0.4027 0.6842 0.9642 1.2411

Ref. [11] 0.1387 0.4030 0.6846 0.9646 0.2416

3 Batra et al. [3] 0.1650* 0.4770* 0.8097* 1.0886 1.3606

15� 15 0.1647 0.4729 0.7970 1.1006 1.3757

Ref. [11] 0.1650 0.4731 0.7972 0.9646 1.2416

4 Batra et al. [3] 0.2120* 0.5442 0.8164 1.1441* 1.4788*

15� 15 0.2117 0.5503 0.8254 1.1192 1.4393

Ref. [11] 0.2123 1.1195 1.4395

5 Batra et al. [13] 0.2193* 0.5921* 0.9930* 1.3631 1.7040

15� 15 0.2199 0.5864 0.9759 1.3636 1.7054

Ref. [11] 0.2200 0.5870 0.9766 0.1195 0.4395

6 Batra et al. [3] 0.2721 0.6011* 1.0015* 1.3965 1.7937

15� 15 0.2751 0.5953 0.9832 1.3643 1.7493

Ref. [11] 0.5951 0.9823 1.3646

7 Batra et al. [3] 0.2775* 0.6814 1.0222 1.4058* 1.8010*

15� 15 0.2765 0.6821 1.0232 1.3708 1.7569

Ref. [11] 0.2766 1.3703 1.7504

8 Batra et al. [3] 0.2830* 0.7178 1.0765 1.4351 1.8121*

15� 15 0.2826 0.7214 1.0821 1.4428 1.8035

Ref. [11] 0.2833 1.7563

9 Batra et al. [3] 0.3145* 0.7469* 1.2354* 1.6683* 1.8740*

15� 15 0.3140 0.7383 1.2125 1.6800 1.8972

Ref. [11] 0.3140 0.7379 1.2118 1.6801 1.8981

10 Batra et al. [3] 0.3175* 0.7561* 1.2466* 1.7282* 2.2113

15� 15 0.3170 0.7472 1.2219 1.6865 2.1590

Ref. [11] 0.3171 0.7478 1.2226 1.6865

Frequencies of flexural modes are marked with *.
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Results for simply supported and clamped boundary conditions, presented in Tables 1 and 2 are in terms of
the non-dimensional frequency ō

ō ¼ oh

ffiffiffiffiffiffiffiffi
r

D11

r
, (4)

where o, h and r are, respectively, the dimensional frequency, the plate thickness, and the mass density of the
plate material. The aspect ratio, h̄, of a square plate is defined as

h̄ ¼ h=a, (5)

where a is the length of a side of the plate. An asterisk on the value of a frequency signifies that the
corresponding mode of vibration is flexural. We compute results with 9, 11 and 15 collocation points
uniformly spaced in the x- and the y-directions of the square plate of non-dimensional side one, and compare
present results with the finite element solution of Batra et al. [3], and the exact solution of Ref. [4]. It is clear
that the presently computed frequencies match very well with those reported in Refs. [3,4].

We have also listed in Tables 1 and 2 the corresponding frequencies from Ref. [11] computed with the
15� 15 collocation points. It is evident that the use of multiquadratic radial basis functions given by Eq. (2)
Table 3

For different aspect ratios, first 10 non-dimensional natural frequencies of a simply supported monoclinic square plate

N Source h̄ ¼ 0:1 h̄ ¼ 0:2 h̄ ¼ 0:3 h̄ ¼ 0:4 h̄ ¼ 0:5

1 Batra et al. [3] 0.0527 0.1972 0.4058 0.6545 0.9036

15� 15 0.0531 0.1990 0.4103 0.6632 0.9084

Ref. [11] 0.0527 0.1989 0.4107 0.6638

2 Batra et al. [3] 0.1241 0.3627 0.5439 0.7251 0.9064

15� 15 0.1277 0.3634 0.5450 0.7267 0.9084

Ref. [11] 0.1279

3 Batra et al. [3] 0.1424 0.3628 0.5441 0.7253 0.9299

15� 15 0.1431 0.3634 0.5450 0.7267 0.9415

Ref. [11] 0.1434

4 Batra et al. [3] 0.1814 0.4441 0.8745 1.2999 1.6280

15� 15 0.1817 0.4559 0.8966 1.3496 1.7476

Ref. [11] 0.4574 0.8988 1.3505

5 Batra et al. [3] 0.1814 0.4780 0.8887 1.3494 1.7819

15� 15 0.1817 0.4827 0.9024 1.3948 1.8059

Ref. [11] 0.4838 0.9043 1.3989 1.8062

6 Batra et al. [3] 0.1971 0.6539 0.9979 1.3587 1.7939

15� 15 0.1990 0.6632 1.0486 1.3948 1.8168

Ref. [11] 0.1992 0.6651

7 Batra et al. [3] 0.2423 0.6662 1.0855 1.4467 1.8064

15� 15 0.2511 0.6991 1.0901 1.4534 1.8168

Ref. [11] 0.2526

8 Batra et al. [3] 0.2782 0.7245 1.0865 1.4472 1.8810

15� 15 0.2808 0.7267 1.0901 1.4534 1.9231

Ref. [11] 0.2817

9 Batra et al. [3] 0.3004 0.7249 1.2129 1.7281 2.1418

15� 15 0.3065 0.7267 1.2359 1.7445 2.1806

Ref. [11] 0.3079 1.2393

10 Batra et al. [3] 0.3211 0.8124 1.3003 1.8056 2.2511

15� 15 0.3237 0.8372 1.3084 1.8522 2.2971

Ref. [11] 0.3247 0.8403 1.8566

Frequencies of flexural modes are marked with *.
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misses some natural frequencies. Frequencies missed vary with the aspect ratio of the plate. However, all of the
first 10 frequencies are accurately captured when basis functions given by Eq. (1) are employed.
2.2. Monoclinic materials

For a monoclinic material we have

½D� ¼

86:74 �8:25 27:15 �3:66 0 0

129:77 �7:42 5:7 0 0

102:83 9:92 0 0

sym: 38:61 0 0

68:81 2:53

0 29:01

2
666666664

3
777777775
GPa, (6)

and r ¼ 2649 kg=m3. Computed natural frequencies for simply supported and clamped plates are listed in
Tables 3 and 4, respectively.
Table 4

For different aspect ratios, first 10 non-dimensional natural frequencies of a clamped monoclinic square plate

N Source h̄ ¼ 0:1 h̄ ¼ 0:2 h̄ ¼ 0:3 h̄ ¼ 0:4 h̄ ¼ 0:5

1 Batra et al. [3] 0.0993* 0.3382* 0.6405* 0.9694* 1.3091*
15� 15 0.1009 0.3432 0.6479 0.9769 1.3148
Ref. [11] 0.1012 0.3435 0.6481 0.9771 1.3150

2 Batra et al. [3] 0.1835* 0.6012* 1.0465* 1.4010 1.7518
15� 15 0.1886 0.6058 1.0521 1.4484 1.8105
Ref. [11] 0.1894 0.6059 1.0519

3 Batra et al. [3] 0.2005* 0.6061* 1.0501 1.5028* 1.9593*
15� 15 0.2021 0.6180 1.0863 1.5081 1.9659
Ref. [11] 0.2025 0.6185 1.5079 1.9656

4 Batra et al. [3] 0.2633* 0.6994 1.1119* 1.6295* 2.0888
15� 15 0.2669 0.7242 1.1273 1.6481 2.1195
Ref. [11] 0.2680 1.1274 1.6480

5 Batra et al. [3] 0.3133* 0.8000* 1.2602 1.6766 2.1274*
15� 15 0.3230 0.8097 1.2717 1.6956 2.1530
Ref.[11] 0.3240 0.8105 2.1529

6 Batra et al. [3] 0.3393* 0.8408 1.3865 1.8479 2.3086
15� 15 0.3424 0.8478 1.4179 1.8492 2.3678
Ref. [11] 0.3424

7 Batra et al. [3] 0.3492 0.9244 1.4035* 2.0116* 2.6005*
15� 15 0.3621 0.9404 1.4207 2.0325 2.6342
Ref. [11] 1.4185 2.0329 2.6346

8 Batra et al. [3] 0.3746* 0.9336* 1.5608* 2.1029 2.6146
15� 15 0.3823 0.9471 1.5717 2.1291 2.6613
Ref. [11] 0.3839 0.9395 1.5702

9 Batra et al. [3] 0.3875* 0.9751* 1.5828 2.1942* 2.8229*
15� 15 0.3914 0.9946 1.5968 2.2129 2.8583
Ref. [11] 0.3923 0.9941 2.2110 2.8558

10 Batra et al. [3] 0.4210 1.0557* 1.7128* 2.4169* 2.8245*
15� 15 0.4239 1.0645 1.7429 2.4918 3.0460
Ref. [11] 1.0937 1.7413 2.4895 3.0409

Frequencies of flexural modes are marked with *.
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2.3. Hexagonal materials

The beryllium crystal belongs to the close-packed hexagonal system. It has an axis of symmetry such that a
rotation of the crystal through 60� about that axis brings the space lattice into coincidence with its original
configuration. The mass density of beryllium equals 1850 kg=m3, and the elastic constants are

½D� ¼

298:2 27:7 11:0 0 0 0

298:2 11:0 0 0 0

340:8 0 0 0

sym: 165:5 0 0

165:5 0

0 135:3

2
666666664

3
777777775
GPa (7)

Computed natural frequencies of simply supported and clamped plates are listed in Tables 5 and 6,
respectively.
Table 5

For different aspect ratios, first 10 non-dimensional natural frequencies of a simply supported hexagonal square plate

N Source h̄ ¼ 0:1 h̄ ¼ 0:2 h̄ ¼ 0:3 h̄ ¼ 0:4 h̄ ¼ 0:5

1 Batra et al. [3] 0.0555* 0.2076* 0.4264* 0.6857* 0.9681*

15� 15 0.0556 0.2081 0.4281 0.6899 0.9765

Ref. [11] 0.0552 0.2080 0.4285 0.6907 0.9776

2 Batra et al. [3] 0.1340* 0.4230 0.6343 0.8453 1.0558

15� 15 0.1342 0.4232 0.6348 0.8465 1.0581

Ref. [11] 0.1345

3 Batra et al. [3] 0.1340* 0.4230 0.6343 0.8453 1.0558

15� 15 0.1342 0.4232 0.6348 0.8465 1.0581

Ref. [11] 0.1345

4 Batra et al. [3] 0.2076* 0.4662* 0.8940* 1.1935 1.4898

15� 15 0.2081 0.4683 0.9012 1.1969 1.4961

Ref. [11] 0.2083 0.4696 0.9036

5 Batra et al. [3] 0.2116 0.4662* 0.8940* 1.3599* 1.8379*

15� 15 0.2116 0.4683 0.9012 1.3773 1.8720

Ref. [11] 0.4696 0.9036 1.3804 1.8756

6 Batra et al. [3] 0.2116 0.5979 0.8961 1.3599* 1.8379*

15� 15 0.2116 0.5984 1.2697 1.3773 1.8720

Ref. [11] 1.3804 1.8757

7 Batra et al. [3] 0.2543* 0.6855* 1.2624* 1.6834 2.0983

15� 15 0.2550 0.6900 1.2697 1.6929 2.1161

Ref. [11] 0.2562 0.6917 1.2807

8 Batra et al. [3] 0.2543* 0.8165* 1.2654 1.6834 2.0983

15� 15 0.2550 0.8229 1.2697 1.6929 2.1161

Ref. [11] 0.2563 0.8253

9 Batra et al. [3] 0.2991 0.8165* 1.2654 1.7656 2.2003

15� 15 0.2992 0.8229 1.2776 1.7773 2.2216

Ref. [11] 0.8256

10 Batra et al. [3] 0.3214* 0.8449 1.3273 1.8659* 2.3407

15� 15 0.3225 0.8464 1.3330 1.8925 2.3657

Ref. [11] 0.3236 1.9059

Frequencies of flexural modes are marked with *.
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Table 6

For different aspect ratios, first 10 non-dimensional natural frequencies of a clamped hexagonal square plate

N Source h̄ ¼ 0:1 h̄ ¼ 0:2 h̄ ¼ 0:3 h̄ ¼ 0:4 h̄ ¼ 0:5

1 Batra et al. [3] 0.0968* 0.3325* 0.6305* 0.9510* 1.2778*

15� 15 0.0969 0.3325 0.6298 0.9487 1.2732

Ref. [11] 0.0970 0.3330 0.6304 0.9494 1.2741

2 Batra et al. [3] 0.1878* 0.5960* 1.0639* 1.4856 1.8530

15� 15 0.1880 0.5964 1.0643 1.4924 1.8654

Ref. [11] 0.1887 0.5970 1.0649

3 Batra et al. [3] 0.1878* 0.5960* 1.0639* 1.4856 1.8530

15� 15 0.1880 0.5964 1.0643 1.4924 1.8654

Ref. [11] 0.1887 0.5970 1.0649

4 Batra et al. [3] 0.2660* 0.7449 1.1160 1.5370* 1.9980*

15� 15 0.2664 0.7462 1.1193 1.5381 2.0021

Ref. [11] 0.2677 1.5386 2.0027

5 Batra et al. [3] 0.3157* 0.7449 1.1160 1.5370* 1.9980*

15� 15 0.3162 0.7462 1.1193 1.5381 2.0021

Ref. [11] 0.3169 1.5386 2.0027

6 Batra et al. [3] 0.3183* 0.8081* 1.4089* 1.9088 2.3772

15� 15 0.3189 0.8098 1.4141 1.9226 2.4033

Ref. [11] 0.3196 0.8111 1.4154

7 Batra et al. [3] 0.3727 0.9280* 1.4357 2.0105* 2.5981*

15� 15 0.3731 0.9303 1.4420 2.0237 2.6270

Ref. [11] 0.9300 2.0252 2.6287

8 Batra et al. [3] 0.3727 0.9405* 1.5847* 2.1974 2.7334

15� 15 0.3731 0.9429 1.5919 2.2188 2.7735

Ref. [11] 0.9427 1.5911

9 Batra et al. [3] 0.3840* 0.9591 1.6125* 2.2343* 2.8658*

15� 15 0.3849 0.9613 1.6197 2.2539 2.9098

Ref. [11] 0.3864 1.6189 2.2528 2.9085

10 Batra et al. [3] 0.3840* 1.1045* 1.6542 2.2810* 2.9352*

15� 15 0.3849 1.1094 1.6641 2.2999 2.9772

Ref. [11] 0.3864 1.1105 2.2988 2.9759

Frequencies of flexural modes are marked with *.
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3. Discussion

A review of results presented in Tables 1–6 reveals that the multiquadric basis functions coupled with the
collocation method miss some frequencies of plates comprised of orthotropic, monoclinic and hexagonal
materials. The number of frequencies missed is more for monoclinic and hexagonal materials than that for
orthotropic materials. However, the higher-order Wendland radial basis functions used herein capture
reasonably well the first 10 frequencies. The first-order shear deformation theory used herein is the same as that
employed in Ref. [11]. It is shown in Ref. [15] that for an isotropic plate the first-order shear deformation theory
can predict through-the-thickness modes. Qian et al. [16,17] used a meshless method employing basis functions
derived by the moving least squares approximation and a local weak form of the governing equations to find
frequencies, under different boundary conditions, of a thick rectangular plate made of an isotropic material.

4. Conclusions

For square plates comprised of orthotropic, monoclinic and hexagonal materials, we have listed the first 10
frequencies for different edge conditions and aspect ratios. The converged frequencies were computed with a
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meshless collocation method using the Wendland compact support radial basis functions and an optimal
shape parameter. Computed frequencies match very well with the analytical frequencies. For each set of
boundary conditions and material symmetries considered, there are non-flexural modes of vibration.

The use of Wendland compact support radial basis functions captures frequencies missed by using
multiquadric basis functions.
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